Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia.

نویسندگان

  • Xiaoming Liu
  • Meihui Luo
  • Liang Zhang
  • Wei Ding
  • Ziying Yan
  • John F Engelhardt
چکیده

The development of effective therapies for cystic fibrosis (CF) requires animal models that can appropriately reproduce the human disease phenotype. CF mouse models have demonstrated cAMP-inducible, non-CF transmembrane conductance regulator (non-CFTR) chloride transport in conducting airway epithelia, and this property is thought to be responsible for the lack of a spontaneous CF-like phenotype in the lung. Thus, an understanding of species diversity in airway epithelial electrolyte transport and CFTR function is critical to developing better models for CF. Two species currently being used in attempts to develop better animal models of CF include the pig and ferret. In the study reported here, we sought to comparatively characterize the bioelectric properties of in vitro polarized airway epithelia--from human, mouse, pig and ferret--grown at the air-liquid interface (ALI). Bioelectric properties analyzed include amiloride-sensitive Na(+) transport, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS)-sensitive Cl(-) transport, and cAMP-sensitive Cl(-) transport. In addition, as an index for CFTR functional conservation, we evaluated the ability of four CFTR inhibitors, including glibenclamide, 5-nitro-2-(3-phenylpropyl-amino)-benzoic acid, CFTR (inh)-172, and CFTR(inh)-GlyH101, to block cAMP-mediated Cl(-) transport. Compared with human epithelia, pig epithelia demonstrated enhanced amiloride-sensitive Na(+) transport. In contrast, ferret epithelia exhibited significantly reduced DIDS-sensitive Cl(-) transport. Interestingly, although the four CFTR inhibitors effectively blocked cAMP-mediated Cl(-) secretion in human airway epithelia, each species tested demonstrated unique differences in its responsiveness to these inhibitors. These findings suggest the existence of substantial species-specific differences at the level of the biology of airway epithelial electrolyte transport, and potentially also in terms of CFTR structure/function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New models of the tracheal airway define the glandular contribution to airway surface fluid and electrolyte composition.

Antibacterial defenses in the airway are dependent on multifactorial influences that determine the composition of both fluid and/or electrolytes at the surface of the airway and the secretory products that aid in bacterial killing and clearance. In cystic fibrosis (CF), these mechanisms of airway protection may be defective, leading to increased colonization with Pseudomonas aeruginosa. Submuco...

متن کامل

Expression of cystic fibrosis transmembrane regulator Cl- channels in heart.

Cyclic AMP (cAMP)-dependent chloride channels modulate changes in resting membrane potential and action potential duration in response to autonomic stimulation in heart. A growing body of evidence suggests that there are marked similarities in the properties of the cAMP-dependent chloride channels in heart and cystic fibrosis transmembrane regulator (CFTR) chloride channels found in airway epit...

متن کامل

Rapid Communications Expression of Cystic Fibrosis Transmembrane Regulator Cl- Channels in Heart

Cyclic AMP (cAMP)-dependent chloride channels modulate changes in resting membrane potential and action potential duration in response to autonomic stimulation in heart. A growing body of evidence suggests that there are marked similarities in the properties of the cAMP-dependent chloride channels in heart and cystic fibrosis transmembrane regulator (CFITR) chloride channels found in airway epi...

متن کامل

Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia.

Cl- channels located in the apical membrane of secretory epithelia play a key role in epithelial fluid and electrolyte transport. Dysfunction of one of these channels, cystic fibrosis transmembrane conductance regulator (CFTR), causes the genetic disease cystic fibrosis (CF). We review here the properties and regulation of the different types of Cl- channels that have been reported in airway an...

متن کامل

CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.

In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2007